

DevSecOps
Introduction & Implementation

Armin Reiter

arminreiter.com

Version: 1.2

05/11/2020

Table of Contents
1 Introduction .. 1

2 DevOps... 1

2.1 Why DevOps? ... 2

2.2 Stages of DevOps ... 3

3 DevSecOps .. 4

3.1 DevSecOps cycle .. 4

3.2 Integration of Security into DevOps - SAMM .. 5

3.2.1 Governance ...6

3.2.2 Construction ... 7

3.2.3 Verification .. 8

3.2.4 Deployment .. 10

4 Integration of Security into the Development ... 11

4.1 Security Development Lifecycle (SDL) ... 11

5 Practical Example: First steps in DevSecOps ... 13

6 Implementation plan: Integrate Security into DevOps ... 14

6.1 Sprint 1 – Requirements & first steps .. 14

6.2 Sprint 2 – First security improvements, architectural review 15

6.3 Sprint 3 – Improve Security, Configuration & Security review 17

6.4 Sprint 4 – Next level Security, remediate risks by 3rd party tools/libraries 18

6.5 Sprint 5 – Monitoring, Threat Assessment & internal Training 19

6.6 Sprint 6 – Preparation of the final Security/Penetration Test 20

6.7 Sprint 7 – Security & Penetration Test .. 20

6.8 Regular Tasks .. 21

6.9 Outlook.. 21

7 Further information & Tools ... 22

8 References ... 24

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 1

1 Introduction
This paper gives an overview of DevSecOps and describes how to implement this new

methodology. It starts with an explanation of DevOps and how it developed. DevOps is

then extended by security which leads to DevSecOps. Chapter 4 outlines how security

can be integrated into software development by using the common model of the

Security Development Lifecycle (SDL). Those first four chapters create the theoretical

background to implement DevSecOps and they give some background information

about secure software development.

After the theoretical part, chapter 5 shows a practical example how a security breach in

a company could occur. It quickly shows the benefits of DevSecOps and how it can be

useful in such a case.

Chapter 6 is then focusing on how to implement DevSecOps in an existing company. It

consists of clear sprints and tasks which can be used to secure the software

development lifecycle in the company and brings the whole security process of the

developed applications to the next level.

Last but not least the paper finishes with further information and tools that help in the

DevSecOps world.

2 DevOps
The term DevOps is made up of the words Development and Operations, where

development not only consist of software development, but also of other aspects in

software engineering such as testing and quality assurance. The operations part

includes all system administration tasks, like the deployment of the software, the

production environment and the operation and maintenance of all associated

components such as databases or network infrastructures.

Furthermore, DevOps describes practices that helps to improve the collaboration

between IT operations and software development. This includes not only technical

aspects like the automation of software delivery or quality assurance, but also

organizational aspects like the definition of common goals and the creation of a

cooperated culture for the mutual support of IT and development. The aim is to ensure

that software of higher quality can be delivered more quickly. These points can be

illustrated using the following four areas (CAMS):

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 2

• Culture: Focus on people and cooperation. People are more important than

processes and tools.

• Automation: Automation is essential for DevOps to get feedback as fast as

possible. Tools for Release Management, Configuration Management, Systems

Integration, Testing, Monitoring, Orchestration and many more are used.

• Measurement: Continuous measurement of results and quality. Without

measurable data, improvements are difficult to achieve.

• Sharing: Sharing knowledge, ideas, processes and tools.

DevOps contains patterns for collaboration, processes and tools and is therefore more

than just a methodology or framework. It is more comparable to Scrum. The framework

has become extremely popular in recent years, but there is also the opinion that

"NoOps" is the future. With NoOps all operation issues should be automated, so that

they are no longer needed. This could be achieved by using cloud technologies like

PaaS or Iaas

2.1 Why DevOps?

DevOps has evolved for several reasons over time. In the past, there were conflicts of

interest between software development and operations. These were caused by the

separation of those departments which have their own goals and processes. All

optimization efforts took place only in the departments itself and not in the overall

organization. For example, software development wants to deliver new features quickly

(we want change!), whereas operations want a production environment that is as stable

as possible with at least changes as possible (we want stability!), because every change

can potentially lead to problems. The creation of a common culture helps to bring those

two views to a common goal.

DevOps is strongly influenced by agile thinking and tries to integrate agile principles.

In a classical structure it can happen that a "hero cult" develops, e.g. when a developer

creates an application but does not document it sufficiently. In this cult, this one

developer is suddenly a kind of "hero", because he is the only one who has the

knowledge for deployment and maintenance. DevOps with the use of agile principles

is a countermeasure to address such problems.

As known from agile software development, DevOps uses an iterative approach with

continuous improvement of the process and the tools. Exactly this iterative approach

can also be found in the stages of DevOps.

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 3

2.2 Stages of DevOps

Figure 1: Stages of DevOps (Kharnagy, 2016)

• Plan: In the planning phase, metrics, requirements, release plans and security

policies are defined.

• Create: Design, coding and building of the software.

• Verify: Execution of tests (Acceptance, Regression, Security, Performance,

Configuration)

• Package: A release package is created, and the release gets approved through

an approval process.

• Release: Includes all steps for the release and deployment of the application.

• Configure: Necessary infrastructure is configured (databases, network, and so

on)

• Monitor: Important metrics of the application are monitored such as

performance, user feedback, production metrics, etc.

Those phases as well as the ongoing feedback cycles also clearly show the agile

background that DevOps has.

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 4

3 DevSecOps
DevSecOps extends DevOps with security and has the goal to develop more secure

applications. A simple premise of DevSecOps is that everyone involved in the software

development life cycle is also responsible for security. Security tasks are not only done

manually but are also integrated into an automated DevOps workflow. This could be

for example an automated security code analysis (e.g. OWASP analysis tools) as part of

the build process.

The individual phases of DevOps are extended by security. In the planning phase

security requirements must be identified and considered. In the Create phase security

is implemented and in the Verify phase automatic security tests are carried out.

Packaging and Release are extended by checks, Configuration and Monitoring will be

extended to include further steps such as automatic threat detection and attack

prevention.

DevSecOps was developed for several reasons: increasing IT threats, increasing

importance of cybersecurity and additional external requirements such as compliance

with ISO2700x, FIPS, CSA-CCM, PCI-DSS or GDPR. All these aspects must be considered

during application development, which is why security is becoming an integral part of

DevOps in some areas.

3.1 DevSecOps cycle

In addition to the enrichment of the DevOps phases, there is also an own DevSecOps

cycle, which concentrates exclusively on security:

Figure 2: DevSecOps cycle

Analyze

Secure

Verify

Defend

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 5

• Analyze: Identification of the most critical security challenges

Selection of the most important security challenges based on architecture

reviews, problems encountered, risk analysis and similar metrics

• Secure: Implementation of a Defense Strategy

The Defense Strategy includes not only the implementation in the code, but

also regular controlling, adjustment of support processes, execution of

trainings, background checks, creation of a communication strategy, etc. The

following 4 areas can be used as base to describe the defense strategy:

o Challenge Description: What happened and what is the challenge

about? Why is it relevant? Which systems are affected? What is/can be

the impact?

o Defense Story: How does defense work? How is the threat dealt with and

why does this defense effectively solve the problem?

o Operational Guidelines: How is the defense configured and operated?

Who needs training? Who is affected by the change? What needs to be

considered in the future?

o Security Testing Approach: How is it verified that the solution actually

works?

• Verify: Automation of Security Testing

Not all security testing can be automated, but this is attempted as often as

possible. This raises questions such as: What should be tested, how is it tested,

use of positive/negative test, which platforms/tools to test etc.?

• Defend: Detect attacks and prevent exploits

Defence through the use of various tools, such as Runtime Application Self

Protection (RASP), Web Application Firewalls (WAF), Network Intrusion

Detection and Prevention Systems (NIDS/NIPS), Security Information and

Event Management (SIEM)

3.2 Integration of Security into DevOps - SAMM

DevSecOps can be integrated at different levels in the field of software development.

The Open Web Application Security Project (OWASP) uses the Software Assurance

Maturity Model (SAMM) to define four business functions to cover the core areas of

software development:

• Governance: Governance around the processes and activities in the company

related to the software development process and delivery.

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 6

• Construction: Development activities including processes and activities such

as product/project management, requirements engineering, architecture,

design and implementation.

• Verification: Checking the packages created in software development (code

review, testing, security reviews, etc.).

• Deployment: Commissioning and operation

Each business function contains 3 security practices, which can be viewed

independently.

Figure 3: Software Assurance Maturity Model (OpenSAMM, 2009)

3.2.1 Governance

The organizational business function is divided into the following three security

practices:

• Strategy & Metrics: The framework and overall strategy for the Software Security

Assurance Program. Identification of security goals and possible risks as well as

the definition of metrics to measure success.

• Policy & Compliance: Setting up security and compliance requirements. All

requirements are collected - both external (regulatory requirements) and

internal (internal security standard). This includes, for example, the GDPR or ISO

27001. Definition of security design best practices, identity and access

management, security requirements, cryptography, key management, session

management and similar.

• Education & Guidance: Training and support for all persons integrated in the

software lifecycle. Training of persons in the areas of security and compliance,

setting up knowledge bases, FAQs, etc.

For DevSecOps the following requirements may arise:

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 7

• Compliance with GDPR (how are deletion requests handled?)

• OWASP SAMM self-assessment

• Creation of Security Guidelines, IT Policies and others

• Integration of secure coding automation tools into the development process

• Threat intelligence security monitoring

• Create a secure design knowledge base for development

• Integration of security testing tools into Quality Assurance

3.2.2 Construction

Construction includes not only the software development itself, but also processes and

activities before, after and during the development such as product management.

Security practices in this area are:

• Threat Assessment: Define and prevent possible risks and dangers. Use STRIDE

for the threat assessment which stands for:

o Spoofing: Disguising/pretending another identity, including phishing, IP

spoofing or URL spoofing,

o Tampering: falsification/sabotage of data e.g. from websites (exchange of

parameters, manipulation of form data etc.)

o Repudiation: denying of actions by assuming the identity of other users

or deleting log data.

o Information Disclosure: Unauthorized access to data, e.g. database hacks

and theft of data from millions of customers or credit card data.

o Denial of Service: Prevention of services, e.g. DDoS attacks.

o Elevation of Privilege: Unauthorized use of increased system rights

There are other assessments like the Privacy Impact Assessment (PIA), which

can be used for GDPR related topics. It helps to identify which components

collect which data, how those access the data and how these are secured.

• Security Requirements: Security requirements depend on various factors such

as business itself (e.g. banking), legal requirements (GDPR, PCI-DSS) or security

compliance. Based on the requirements, the IT processes (e.g. release

management) must be adapted accordingly.

OWASP Application Security Verification Standard (ASVS) defines 3 levels of

security requirements:

o ASVS Level 1: minimum requirements, apply to each software

This is the compliance with basic guidelines such as OWASP Top 10.

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 8

o ASVS Level 2: Applications that contain sensitive data

Components (libraries, modules, external systems) have to be identified

and documented, security libraries have to be implemented centrally,

components are separated (network segmentation, firewalls, ...), layer

architecture is used, no critical business logic or keys on the client side,

etc.

o ASVS Level 3: critical applications which contain sensitive data or need a

high level of trust. This includes applications in the financial or medical

sector.

Threat model exists (STRIDE), secrets, keys, passwords are not found in

source code, access control is managed centrally, master secrets use

virtual or physical hardware security modules (HSM), random numbers

are generated with sufficient entropy even under heavy load.

• Secure Architecture: Includes proactive action to design and develop secure

software. This includes documentation of used frameworks, using security by

design and the identification of security critical modules, services and

infrastructure. Also, the identification of shared infrastructure and services

within the organization and the accesses must be considered.

All the mentioned points and their results should be documented as it is crucial to

consider security from the beginning and to plan the application according to those

requirements. The principle Security by Design is applied in DevSecOps and must be

considered in all phases, but especially in the construction phase.

3.2.3 Verification

Verification includes all activities to check the artifacts generated before the

application is delivered. Automated tests, regression tests, verification of the

deployment packages, documentation and all other deliverables are considered in this

phase. From a security perspective, there are three areas to include:

• Design review: Is intended to ensure that the software is securely designed and

that appropriate security guidelines are observed and checked. The earlier you

recognize problems in the architecture through a review, the sooner you avoid

high costs through refactoring. The following resources can be used for the

review:

o Security Compliance Checklist

o OWASP ASVS

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 9

o OWASP Top 10

o CWE / SANS Top 25 Most Dangerous Software Errors

o ATT & CK adversarial tactics, techniques and common knowledge

• Code Review: Review of the code considering secure coding, checking third-

party components, checking the configuration, etc.

• Security Testing: The aim is to check whether the application fulfills the security

requirements, industry standards, customer requirements and legal

requirements. To do this, the following information and tools can be useful:

o Security Release Criteria: Minimum requirements that must be met for

the software to be released.

o Security Testing Plan/Cases: Test plan for security, e.g. OWASP testing

guide (https://www.owasp.org/images/1/19/OTGv4.pdf).

o Automation Testing Toolkits: Integration of automatic security testing

tools in the CI/CD process. This includes both code analysis tools that

check for security and test tools such as vulnerability scanners

(https://owasp.org/www-community/Vulnerability_Scanning_Tools),

tools that are developed in the company or other existing tools – e.g. Kali

Linux Testing (https://tools.kali.org/tools-listing).

So-called release gates should also be introduced. These define various criteria’s

that must be met before the software is released.

It is relevant for DevSecOps to insert appropriate review processes. There are various

tools for automation that perform automatic code analyzes (Static Code Review,

Maintainability Index, Cyclomatic Complexity, Code Coverage, Secure Code Analysis) or

perform automatic tests. The tools differ depending on the technology used for

development (programming language) and the technology used for the DevOps stack

(Azure DevOps, Atlassian, ...). A list of tools for different technologies is e.g. can be found

at OWASP:

• .NET: https://www.owasp.org/index.php/Category:OWASP_.NET_Project

• Java: https://www.owasp.org/index.php/Category:Java

• Perl: https://www.owasp.org/index.php/Perl

• PHP: https://www.owasp.org/index.php/PHP

• Python: https://www.owasp.org/index.php/Python

• and many more

There is also a general list of tools for automated source code analysis:

• https://www.owasp.org/index.php/Source_Code_Analysis_Tools

https://www.owasp.org/images/1/19/OTGv4.pdf
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://tools.kali.org/tools-listing
https://www.owasp.org/index.php/Category:OWASP_.NET_Project
https://www.owasp.org/index.php/Category:Java
https://www.owasp.org/index.php/Perl
https://www.owasp.org/index.php/PHP
https://www.owasp.org/index.php/Python
https://www.owasp.org/index.php/Source_Code_Analysis_Tools

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 10

• https://github.com/mre/awesome-static-analysis/

Language-independent tools include: SonarQube, DREK, Graudit, VisualCodeGrepper

3.2.4 Deployment

Deployment includes all steps for the actual delivery of the software. The three security

practices in this area are:

• Vulnerability Management: Contains the definition of possible security

incidents and possible vulnerabilities. NIST SP 800-61 - "Computer Security

Incident Handling Guide" describes some processes and procedures such as

Incident Handling (Preparation - Detection & Analysis - Containment

Eradication & Recovers - Post-Incident Activity). In the event of a problem, there

are different levels:

Vulnerability received - internal/external communication - Root Cause Analysis -

Mitigation - Deployment and Verification. DevSecOps is involved in all areas,

especially from the root cause analysis.

• Environment hardening: Securing the environment through secure

configurations, ongoing monitoring or thread detection systems. Checking

Common Vulnerabilities and Exposures (CVEs - https://cve.mitre.org/)

• Operational enablement: Contains the interactions between the development

team and operations team. This includes deployment, testing, running security

checks or handover and secure the configuration. When a software is delivered

it should at least fulfill the following points:

o Code signing to ensure integrity and authenticity.

o Application communication ports matrix so that as few ports as possible

are opened for as few applications as possible

o Secure application configuration

In the DevSecOps Cycle, you must ensure that the risks listed do not occur and that

appropriate processes and tools are implemented, e.g. to prevent the deployment of a

manipulated software package. You should also be prepared for any problems and

continuously check the productive systems.

https://github.com/mre/awesome-static-analysis/
https://cve.mitre.org/

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 11

4 Integration of Security into the Development
The previously described model - OWASP SAMM - can be used to generally integrate

security into DevOps. The Microsoft Security Development Lifecycle Model (SDL) is

recommended to integrate security into the software development itself. It includes

different phases of development and describes which security activities should be

integrated into the individual phases.

4.1 Security Development Lifecycle (SDL)

Phases Description, To-Dos

Training • Core Security Training: Conducting training for

everyone (developers, testers, IT, program managers) on

the topics of secure design, development and testing,

privacy

Requirements • Establish Security Requirements

• Create Quality Gates/Bug Bars: Define quality criteria,

define thresholds with the aim of preventing errors

during development.

• Perform Security and Privacy Risk Assessments

Design • Establish Design Requirements: Define design

requirements so that time and resources are available

for security (timeline, budget) and the design already

contains certain requirements (e.g. cryptography).

• Perform Attack Surface Analysis/Reduction: Analysis of

possible attack scenarios and consideration of these in

the design (principle of least privilege)

• Threat modeling: Define potential threats and prepare

for action

Implementation • Use approved tools: Use and maintain a list of tested

tools and security checks. Update tools and libraries.

• Deprecate Unsafe Functions: Analysis of all functions

and APIs and exclusion of all unsafe or potentially

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 12

dangerous or risky interfaces or replacement with safe

alternatives.

• Perform Static Analysis: Security Code Review and

other code analysis tools

Verification • Perform Dynamic Analysis: Check the running

software, monitor the application (memory corruption,

user privilege issues and other security issues)

• Perform Fuzz Testing: Tests with manipulated, random

or other „unusual” data.

• Conduct Attack Surface Review: Review of attack

surfaces, which interfaces are there to the system,

which entry gates are there etc..

Release • Create an Incident Response Plan: preparation for

possible problems, establishing security contacts,

security plans etc.

• Conduct Final Security Review: Final security review of

threat model, tools, performance, quality guidelines etc.

Potentially run penetration test again.

• Certify Release and Archive: Certify the software before

release and archive all artifacts (specifications, source

code, binaries, threat models, documentation,

emergency plans, licenses, third-party tools, etc.)

Response • Execute Incident Response Plan: Implementation of

the Incident Response Plan, which was defined in the

release and execute the activities as well as ongoing

monitoring.

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 13

5 Practical Example: First steps in DevSecOps
The following first quick example shows how DevSecOps could work in case of a

security issue. For this example, let’s assume that a simple web application was created

as part of a DevOps project. After a while there is a security problem in the web

application. It turns out that SQL Injection is possible and was carried out by an attacker.

How can security be integrated into the DevOps process?

1. Plan - Implement a Defense Strategy

The strategy in this example could be to prevent SQL injection by input

validation and switching to queries with parameters. The necessary steps are

divided into several backlog items so that the implementation can start.

2. Create: Implementation of the defined backlog items.

3. Verify - automation of security testing

To prevent such problems in the future, security testing will be integrated into

the verification process. For this purpose, a corresponding tool is installed in

the development environment of the developer. Furthermore, this tool is

integrated into the CI/CD process. As soon as the tool detects a security issue

during the build, the build fails and deployment is prevented.

4. Release: Release of the new software

5. Monitor - monitoring of the productive system

As soon as the new web application is online, it is continuously checked

whether there are new security problems and whether SQL injection is used for

other purposes. Furthermore, the monitoring can be expanded to

automatically generate a warning when using SQL Injection.

6. Analyze / Plan - identify the next steps

As usual in an iterative environment, the application is tried to be further

improved. Problems are solved one after the other. SQL injection has been

fixed. The next step could be the extension of the security testing tools to

prevent cross-site scripting.

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 14

6 Implementation plan: Integrate Security into
DevOps

The following describes how DevSecOps could be implemented in an existing

company. It is assumed that DevOps has already been implemented and is now being

expanded to include security. The following steps are basically generic, but in some

cases, it is assumed that the company develops software with .net Core and Microsoft

Azure. The steps and resources listed may therefore be adapted for other

technologies.

Since DevSecOps is strongly based on agile approaches, the following plan consists of

sprints. The number of sprints and the length could highly vary based on the capacity,

the number of identified issues and the maturity of the system and the team. In

Sprint 1, an OWASP Top10 check is already being carried out. If an extraordinarily large

number of errors are found here, this by sure affects the next sprints.

The sprints are designed in such a way that the first ones are more precisely defined

and the latter less precisely, since the tasks and requirements for the next sprints arise

in the individual sprints. The specified sprints and their tasks serve as a guide for the

implementation of DevSecOps in an existing company.

6.1 Sprint 1 – Requirements & first steps

Goal: At the end of the sprint, there should be an awareness of security and its

importance. Everyone should feel obliged to security and have gained basic knowledge

in this area. Likewise, all security and compliance requirements must be defined at the

end of the sprint.

Tasks Responsible

DevSecOps detail planning

Plan the sprints, define base requirements and extend this plan if

needed. This is a permanent task in an agile environment, so don’t

plan too much.

CISO (Chief

Information

Security

Officer)

Collect Security & Compliance requirements

Capture all requirements in coordination with the CEO, CIO,

compliance and the legal department.

CISO

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 15

Prepare/execute Secure Coding Trainings for DevOps

Run Secure Coding Trainings with partners/training providers.

CISO,

DevOps

Setup Security Knowledge Base

Setup a KB for the Software Development and IT which must be

maintained and extended regularly.

IT

Hang up .Secure Coding Sheet so that it is clearly visible

e.g. https://www.owasp.org/index.php/.NET_Security_Cheat_Sheet

DevOps

Find and define the first security tools for the DevOps process

Selection based on:

https://github.com/mre/awesome-static-analysis/ or

https://www.owasp.org/index.php/Category:OWASP_.NET_Project

Potential Tools:

• OWASP AntiSamy .net

• Security Code Scan for .net (https://security-code-

scan.github.io/)

• SonarLint: https://www.sonarlint.org/visualstudio/

IT-Architect

Carry out an OWASP Top 10 Review

Review the applications to prevent common OWASP Top 10 issues

IT-Architect

6.2 Sprint 2 – First security improvements, architectural review

Goal: At the end of the second sprint, the first identified security issues should be

remedied and the first tools are integrated into the CI process. The architecture is

reviewed and documented so that all components of the system are known. The result

of the review also serves as input for the next sprints.

Tasks Responsible

Integrate first Security Tools into the DevOps process

Integrate the tools identified in Sprint 2 into the DevOps process.

This could be that Static Code Analyzers are integrated into the

IDE and the build process.

IT

https://www.owasp.org/index.php/.NET_Security_Cheat_Sheet
https://github.com/mre/awesome-static-analysis/
https://www.owasp.org/index.php/Category:OWASP_.NET_Project
https://security-code-scan.github.io/
https://security-code-scan.github.io/
https://www.sonarlint.org/visualstudio/

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 16

Fix occurring warnings

The newly integrated tools will show a lot of warnings which

should be fixed. These fixing will start in the second sprint and

could take multiple sprints, depending on the number of

warnings.

Development

Resolve OWASP Top10 issues

The issues identified in Sprint 1 should be fixed. If there are too

many issues, then those should be prioritized and spread across

the next sprints.

Development

Add fixed issues to automated Test

Extend the automated tests so that the identified security issues

are covered by the test cases. If this is not (yet) possible,

document those cases in the test management so that they are

at least covered and documented by manual tests.

Tester,

Development

Security Review of the architecture

Review the architecture based on the OWASP ASVS. To do that,

define the level which you should already know from Sprint 1.

After that, go through the checklist and create security issues

(https://www.owasp.org/images/3/33/OWASP_Application_Securi

ty_Verification_Standard_3.0.1.pdf).

IT-Architect

Documentation of the architecture

Document the architecture including all components,

connections, interfaces etc. This should be a result of the security

review of the architecture.

IT-Architect

Fill Security Knowledge Base, define Guidelines

Extend the Security KB, Definition of Guidelines – e.g.

Cryptography (Hashes, Algorithms, …), Session Management,

Identity Management, etc.

DevSecOps

https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 17

6.3 Sprint 3 – Improve Security, Configuration & Security review

Goal: At the end of the third sprint, the security level of the applications should be

further improved. The configuration is reviewed from security perspective and changed

accordingly. External tools (3rd party libraries and co) are documented and checked.

Tasks Responsible

CWE/SANS Top25 Test run

After reviewing and fixing OWASP Top10 issues, it’s time to

further check the applications. This can be done by using the

„25 Most Dangerous Software Errors” (CWE/SANS Top25)

IT-Architect

3rd party tools review & documentation

Review and documentation of all 3rd party libraries and tools.

Those must be known and checked for security issues.

IT-Architect,

DevSecOps

Define Metrics for Security

A good starting point are the Common Criteria for

Information Technology Security Evaluation with its

Evaluation Assurance Levels (EAL) 1 – 7. Others are the Orange

Book (TCSEC), SSE-CMM, NIST FIPS-140 series or NIST SP 800-

55. (see 7 - Further information & Tools)

CISO

Check Configuration for Security

Check, where and how Keys, Passwords, Connection String

and other confidential information is stored. Are they in the

source code? Do you really need to store them? What about

production environment configuration? Document the issues

and add them as backlog items.

DevSecOps

Release Management Security Review

Check the current release management process for any

issues, missing verifications and others and document it.

IT

Define Security Testing Plan

Develop a plan about how you are going to test the security of

the system (roadmap, deliverables, activities, timeline,

IT-Security

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 18

resources …). This plan is the base for security tests executed

later.

6.4 Sprint 4 – Next level Security, remediate risks by 3rd party
tools/libraries

Goal: At the end of the sprint, the overall security should be greatly improved by fixing

the identified CWE/SANS Top25 issues, as well as problems in the configuration. The

definition of quality gates creates the basis for sustainably improving the release quality

in the next sprint.

Tasks Responsible

Fix identified CWE/SANS Top25 issues and extend the

Verification process

Resolving the problems encountered and integrating them

into the CI process, if possible. If this is not possible – add

verification tests in the test management.

DevSecOps

Secure configurations

Securing Connection Strings, Keys and others. Better is to

completely remove them by using e.g. managed identities.

DevSecOps

Define Release Gates/Quality Gates

Definition of metrics and quality guidelines that must be

fulfilled before the software is released.

CISO

Define Incident Handling & Incident Response Plan

Define and document how security incidents are handled and

how to act in case of an incident. Define emergency contacts,

which must be involved. Go through the NIST SP 800-61 -

"Computer Security Incident Handling Guide".

CISO

Replace 3rd party Tools

If there were any issues with 3rd party tools or libraries

discovered in the last sprint, they may have to be replaced.

Developers

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 19

This could take longer than just one sprint, so plan it for the

next sprints if needed.

Research & Select Monitoring Tools

Researching tools that can be used to monitor security.

Drawing up a list and select the first tools.

IT-Architect/IT-

Security

6.5 Sprint 5 – Monitoring, Threat Assessment & internal Training

Goal: After this sprint, the security of the applications are tested, and identified issues

are documented. The applications are now monitored so that attacks can be detected.

All members of the organization are familiar with security and have finalized security

awareness trainings

Tasks Responsible

Setup/integrate Monitoring Tools

Setup or integrate the monitoring tools identified in the last

sprint.

IT

Threat assessment according to STRIDE

Do Threat Assessments according to STRIDE

CISO

Do internal Security Test

Do an internal security test and document all identified issues.

IT-Security

Conduct IT-Security Awareness Training

The whole organization must be trained and get knowledge

about security. This should also prevent one of the main

threats which is “Social Hacking”.

CISO

Implement Release/Quality Gates

Implementation of the quality goals that were defined in the

last Sprint. These quality gates should be automatically

checked. If that’s not possible, define some manual checks

that must be done for each major and minor release.

DevSecOps

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 20

6.6 Sprint 6 – Preparation of the final Security/Penetration Test

Goal: As many security problems as possible should be fixed in this sprint. This applies

in particular to those who appeared in the internal security test. The penetration test

should be prepared.

Tasks Responsible

Resolve all identified issues

Elimination according to priorities, preparation of the

application for the external security test. Extensions to the

automatic verifications to automatically check all problems

that occur. Consider the results of the threat assessment.

DevSecOps

6.7 Sprint 7 – Security & Penetration Test

Goal: At the end of the sprint, all weaknesses in the IT systems and in the organization

should be known so that they can be remedied in the next sprint. This test must be

carried out by an external partner and should, if necessary, be in preparation for a

possible certification. The results are therefore not only the weak points, but also

necessary adjustments for the acquisition of a certification.

Tasks Responsible

Perform external Security & PenTest

Run a penetration test which checks the technical systems.

Do security audits, phishing campaigns and crisis scenarios to

also check organizational measures and the human factor

(employees).

External Security

Partner

Extend the IT-Security Policy

Extend the security policy by review processes etc.

DevSecOps

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 21

6.8 Regular Tasks

During the sprints there are certain tasks that should be carried out continuously. In

general, everyone in the team is responsible for security and the following list does not

include everything by far but should serve as a rough checklist so that certain points

are not neglected.

Tasks Responsible

Fix Code Analyzer (Security) Warnings

Warnings that occur must be fixed regularly as part of daily

job.

DevSecOps

Increase Code Coverage

Increase unit-test code coverage as well as security tests to

improve the quality.

DevSecOps

Go through the DevSecOps Cycle

Analyze – Secure – Verify – Defend: These steps are repeated

within the sprints whenever security problems are identified.

Issues are documented, added to the backlog and prioritized.

DevSecOps

Update the Security Knowledge Base

The security knowledge base is a living system and is

constantly extended. Share information about security within

the company.

DevSecOps

6.9 Outlook

Security is basically never done and can always be improved. Some ideas are:

• Run Penetration Tests regularly

• Run Crisis Simulations

• Review policies and other guidelines

• Do Security Awareness Trainings (consider online and offline trainings)

• Run simulated attacks (phishing attack, DDoS, …)

• Hack your own system

• Start a bug bounty program

• …

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 22

7 Further information & Tools
ATT&CK – Adversarial Tactics, Techniques and Common Knowledge:

https://attack.mitre.org/

Awesome AppSec: https://github.com/paragonie/awesome-appsec

CAPEC – Common Attack Pattern Enumeration and Classification:

http://capec.mitre.org/data/definitions/1000.html

Cloud Security Alliance - Consensus Assessments:

https://cloudsecurityalliance.org/working-groups/consensus-assessments/

Common vulnerabilities and exposures (CVEs): https://cve.mitre.org/

CWE/SANS Top 25 Most Dangerous Software Errors: http://cwe.mitre.org/top25/

CVSS – Common Vulnerability Scoring System: https://www.first.org/cvss/

GDPR Privacy Impact Assessment: https://gdpr-info.eu/issues/privacy-impact-

assessment/

Microsoft Elevation of Privilege Card Game: https://www.microsoft.com/en-

us/SDL/adopt/eop.aspx

Microsoft Threat Modeling Tool: https://docs.microsoft.com/en-

us/azure/security/azure-security-threat-modeling-tool

NIST Cyber Security Framework: https://www.nist.gov/cyberframework

NIST Information Security Handbook – A guide for Managers:

https://csrc.nist.gov/publications/detail/sp/800-100/final

NIST SP 800-50: Building an Information Technology Security Awareness and Training

Program: https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-

50.pdf

NIST SP 800-61 – „Computer Security Incident Handling Guide“:

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-61r2.pdf

Open Reference Architecture for Security and Privacy: https://security-and-privacy-

reference-architecture.readthedocs.io/en/latest/

Open Security Architecture Patterns: http://www.opensecurityarchitecture.org/cms/

https://attack.mitre.org/
https://github.com/paragonie/awesome-appsec
http://capec.mitre.org/data/definitions/1000.html
https://cloudsecurityalliance.org/working-groups/consensus-assessments/
https://cve.mitre.org/
http://cwe.mitre.org/top25/
https://www.first.org/cvss/
https://gdpr-info.eu/issues/privacy-impact-assessment/
https://gdpr-info.eu/issues/privacy-impact-assessment/
https://www.microsoft.com/en-us/SDL/adopt/eop.aspx
https://www.microsoft.com/en-us/SDL/adopt/eop.aspx
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool
https://www.nist.gov/cyberframework
https://csrc.nist.gov/publications/detail/sp/800-100/final
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-50.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-50.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-61r2.pdf
https://security-and-privacy-reference-architecture.readthedocs.io/en/latest/
https://security-and-privacy-reference-architecture.readthedocs.io/en/latest/
http://www.opensecurityarchitecture.org/cms/

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 23

OpenSAMM Self-Assessment Worksheet:

http://www.opensamm.org/downloads/resources/20090925-SAMM-Assessment-

v0.4.xls

OWASP ASVS checklist for audits: https://github.com/shenril/owasp-asvs-checklist

OWASP Code Review Project:

https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

OWASP Cornucopia: https://www.owasp.org/index.php/OWASP_Cornucopia

OWASP Security Knowledge Framework:

https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework

OWASP threat modeling cheat sheet:

https://www.owasp.org/index.php/Threat_Modeling_Cheat_Sheet

PCI-DSS – Payment Card Industry Data Security Standard:

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf

SAFECode Security White Papers: https://safecode.org/publications/

SEI CERT Coding Standards:

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

Static analysis tools for all programming languages:

https://github.com/mre/awesome-static-analysis/

http://www.opensamm.org/downloads/resources/20090925-SAMM-Assessment-v0.4.xls
http://www.opensamm.org/downloads/resources/20090925-SAMM-Assessment-v0.4.xls
https://github.com/shenril/owasp-asvs-checklist
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/OWASP_Cornucopia
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/Threat_Modeling_Cheat_Sheet
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://safecode.org/publications/
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://github.com/mre/awesome-static-analysis/

DevSecOps arminreiter.com

Copyright © 2020 Reiter ITS – Armin Reiter, all rights reserved 24

8 References
Drinkwater, Doug (2018): What is DevSecOps? Developing more secure applications,

in: https://www.csoonline.com/article/3245748/devops/what-is-devsecops-developing-

more-secure-applications.html, last checked: 10.11.2018

Gualtieri, Mike (2011): I Don’t Want DevOps. I Want NoOps., in:

https://go.forrester.com/blogs/11.02-07-i_dont_want_devops_i_want_noops/, last

checked: 10.11.2018

Hüttermann, Michael (2012): DevOps for Developers, Berkeley: Apress

Hsu, Tony (2018): Hands-On Security in DevOps, Birmingham: Packt Publishing

Jendrian, Kai (2012): Sicherheit als Qualitätsmerkmal mit OpenSAMM, DuD –

Datenschutz und Datensicherheit, 4/2012, online:

https://www.secorvo.de/publikationen/opensamm-jendrian-2012.pdf

Kharnagy (2016): A visual representation of the DevOps workflow, in:

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

Microsoft (2018): Security Development Lifecycle, in: https://www.microsoft.com/en-

us/sdl, last checked: 10.11.2018

OpenSAMM (2009): Software Assurance Maturity Model, in:

http://www.opensamm.org/downloads/SAMM-1.0-en_US.pdf

OWASP (2018): OWASP Application Security Verification Standard 3.0.1, in:

https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Stand

ard_3.0.1.pdf, last checked: 10.11.2018

Wikipedia (2018): DevOps Toolchain, in:

https://en.wikipedia.org/wiki/DevOps_toolchain, last checked: 10.11.2018

Williams, Jeff (2018): Introduction to DevSecOps, in:

https://dzone.com/refcardz/introduction-to-devsecops, last checked: 11.11.2018

Willis, John (2010): What Devops Means To Me, in: https://blog.chef.io/2010/07/16/what-

devops-means-to-me/, last checked: 11.11.2018

https://www.csoonline.com/article/3245748/devops/what-is-devsecops-developing-more-secure-applications.html
https://www.csoonline.com/article/3245748/devops/what-is-devsecops-developing-more-secure-applications.html
https://go.forrester.com/blogs/11.02-07-i_dont_want_devops_i_want_noops/
https://www.secorvo.de/publikationen/opensamm-jendrian-2012.pdf
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://www.microsoft.com/en-us/sdl
https://www.microsoft.com/en-us/sdl
http://www.opensamm.org/downloads/SAMM-1.0-en_US.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://en.wikipedia.org/wiki/DevOps_toolchain
https://dzone.com/refcardz/introduction-to-devsecops
https://blog.chef.io/2010/07/16/what-devops-means-to-me/
https://blog.chef.io/2010/07/16/what-devops-means-to-me/

